УДК 621.771.23(075.8)

д.т.н. Яковченко А. В., Кравцова С. И. (ДонГТИ, г. Алчевск, ЛНР, mond1991@mail.ru)

КОЭФФИЦИЕНТ УЧЕТА ИСТОРИИ НАГРУЖЕНИЯ ПРИ РАСЧЕТЕ НАПРЯЖЕНИЯ ТЕЧЕНИЯ МЕТАЛЛА В ПРОЦЕССАХ ГОРЯЧЕЙ ПРОКАТКИ

Определение на базе экспериментальных кривых упрочнения среднего в очаге значения напряжения течения металла в зависимости от значений степени и скорости деформации, рассчитанных по формулам С. Экелунда или А. И. Целикова, не учитывает влияния особенностей изменения этих величин по длине очага при горячей прокатке, как правило, дает завышенный результат и требует учета коэффициента истории нагружения Ки. Получены значения коэффициентов Ки для более чем 60-ти конструкционных, инструментальных и нержавеющих марок сталей.

Ключевые слова: уравнение А. Надаи, кривая распределения напряжения течения металла при горячей прокатке, компьютерная база цифровой информации о кривых деформационного упрочнения, сплайн-интерполяция кривых упрочнения, коэффициент учета истории нагружения.

Проблема и ее связь с научными и практическими задачами. Напряжение течения металла σ является одной из главных составляющих по степени влияния на результаты расчетов энергосиловых параметров в процессах горячей прокатки. Совершенствование метода расчета среднего в очаге деформации напряжения течения металла является актуальной задачей.

Известно, что напряжение течения металла при горячей деформации зависит в основном от температуры T, степени ε и скорости деформации U. В технической литературе имеется обширная информация об экспериментальных кривых деформационного упрочнения сталей, например, [1–3], в которой σ представлено в зависимости от степени деформации ε или величины суммарной относительной деформации $\overline{\varepsilon}$

$$\varepsilon = \frac{H - h}{H},\tag{1}$$

$$\overline{\varepsilon} = \ln \frac{H}{h} \,, \tag{2}$$

где H, h — высота полосы до и после обжатия соответственно.

Известно соотношение между \mathcal{E} и $\overline{\mathcal{E}}$, например, [4]

$$\overline{\varepsilon} = \ln(1 - \varepsilon)^{-1}, \ \varepsilon = 1 - \exp(-\overline{\varepsilon}).$$
 (3)

Величина средней в очаге скорости деформации U может быть определена по близким формулам С. Экелунда или А. И. Целикова

$$U_{cp} = \frac{2V_B \sqrt{(H-h)/R}}{H+h},$$
 (4)

$$U_{cp} = \frac{V_1 \varepsilon}{L}, \tag{5}$$

где V_B — окружная скорость вращения валков, имеющих радиус R ; V_1 — скорость металла на выходе из очага деформации; L — длина очага деформации $L = \sqrt{R(H-h)}$.

Наиболее точное значение среднего в очаге деформации при горячей прокатке напряжения течения металла (обозначим эту величину σ_1) можно получить на основе соответствующей кривой распределения σ по длине очага, построенной на базе экспериментальных кривых деформационного упрочнения для рассматриваемой стали с учетом кривых распределения

по длине очага степени ε и скорости деформации U. В работе [4] представлены метод и компьютерная программа расчета кривой распределения напряжения течения металла с учетом истории процесса нагружения на основе уравнения А. Надаи, а также сплайн-интерполяции экспериментальных кривых деформационного упрочнения и кривых распределения в очаге степени и скорости деформации.

Некоторая погрешность при расчете среднего в очаге деформации при горячей прокатке значения напряжения течения металла будет получена в случае его определения на базе экспериментальных кривых деформационного упрочнения с учетом средних значений степени и скорости деформации, найденных из соответствующих кривых распределения этих величин по длине очага деформации.

Еще большая погрешность при расчете среднего в очаге деформации при горячей прокатке значения напряжения течения металла (обозначим эту величину σ_3) будет получена в случае его определения на базе экспериментальных кривых деформационного упрочнения с учетом значений степени и скорости деформации, найденных по формулам (1–5). Это связано с тем, что они отличаются от средних значений, найденных на основе соответствующих кривых распределения по длине очага деформации.

Постановка задачи. Введем коэффициент учета истории нагружения (Ku) при расчете среднего в очаге деформации напряжения течения металла в процессах горячей прокатки как отношение величин σ_1 / σ_3 .

Соответственно, если для конкретной марки стали известен коэффициент Ku, а также среднее в очаге деформации при горячей прокатке значение σ_3 , которое было определено с использованием формул (1–5), то уточненное значение средней величины напряжения течения металла можно будет определить следующим образом

$$\sigma_1 = Ku \cdot \sigma_3 \,. \tag{6}$$

Поставлена задача разработки метода определения коэффициента *Ки* и его значений для широкого марочного сортамента конструкционных, инструментальных и нержавеющих марок сталей.

Изложение материала и его результаты. Определение коэффициента *Ки* выполним на примере инструментальной легированной стали марки ХВГ. На первом этапе необходимо на основе метода, изложенного в работе [4], создать компьютерную базу цифровой информации о кривых деформационного упрочнения стали марки ХВГ (рис. 1) (полная таблица базы представлена в работе [4]).

Коэффициент учета истории нагружения Ku при расчете среднего в очаге деформации при горячей прокатке значения напряжения течения металла определяли также в зависимости от трех факторов: ε , L/h_{cp} , T.

Исходя из требования использования в процессе решения поставленной задачи только экспериментальной информации по кривым деформационного упрочнения (то есть без привлечения эмпирических формул) были выбраны общие для всех марок сталей пределы изменения этих факторов, которые представлены на рисунке 2.

Рисунок 1 Окно формирования компьютерной базы цифровой информации о кривых деформационного упрочнения стали марки XBГ

На рисунке 3 показано окно программы, в котором автоматически формируется матрица расчетного планируемого эксперимента. Эксперимент спланирован по плану второго порядка, применено центральное композиционное ортогональное планирование в зависимости от трех факторов: ε , L/h_{cp} , T.

При этом план-матрица для 3-х факторов содержит 15 опытов. Для каждого опыта выполнен расчет значений H, h,

удовлетворяющих соответствующим факторам ε , L/h_{co} .

На рисунке 4 показано окно программы расчета геометрических параметров очага деформации при прокатке полосы на гладких цилиндрических валках, а также зависимости степени деформации ε от времени τ по длине очага при прокатке на базе метода [4].

Рисунок 2 Пределы изменения факторов ε , L / h_{cp} , T, которые использовали при определении коэффициента учета истории нагружения Ku

КАТАЛОГ\О	бший	ε	nin	ε_{max}	L/	hep min	L/hep r	nax	T min, (град.С)	T max,	(град.С)	
ила. каталог соощии сталей\[3]:XBГ,стр.92, рис.II.		0.27	0	.3	1.3		1.5		1000	1150		
					Содовы	е и натур	ральные знач	ения фан	торов			
		Код	овые значения	факторов	-1.2154	-	1	0	+1	+1.215	54	
			Натуральные	3	0.27		0.2727	0.2850	0.2973	0.3		
			значения Факторов	L/hcp	1.3		1.318	1.400	1.482	1.5		
				Т (град.С)	1000		1013.292	1075.000	1136.708	1150	0	
				План	і-матрі	ща экспе	еримента					
	X1	X2	X3	ا ع	L/hcp	Т (град.	С) Н (мм)	h (мм	σ ₁ (МПа)	σ ₂ (МПа)	σ ₃ (МПа)	Ки=σ1/0
1	-1	-1	-1	0.2727	1.318	1013.29	2 51.872	37.726	133.841	133.843	156.570	0.85483
2	+1	-1	-1	0.2973	1.318	1013.29	2 58.014	40.766	136.083	136.082	159.032	0.85569
3	-1	+1	-1	0.2727	1.482	1013.29	2 41.148	29.927	135.320	135.320	158.393	0.85433
4	+1	+1	-1	0.2973	1.482	1013.29	2 46.051	32.360	137.542	137.543	160.882	0.85492
5	-1	-1	+1	0.2727	1.318	1136.70	8 51.872	37.726	96.840	96.840	113.318	0.85459
6	+1	-1	+1	0.2973	1.318	1136.70	8 58.014	40.766	98.466	98.465	115.101	0.85547
7	-1	+1	+1	0.2727	1.482	1136.70	8 41.148	29.927	97.899	97.899	114.637	0.85399
8	+1	+1	+1	0.2973	1.482	1136.70	8 46.051	32.360	99.508	99.510	116.440	0.85459
9	1.2154	0	0	0.27	1.400	1075.00	0 45.462	33.187	112.515	112.515	131.664	0.85456
10	+1.2154	0	0	0.3	1.400	1075.00	0 52.134	36.494	114.787	114.787	134.182	0.85546
11	0	-1.2154	0	0.2850	1.3	1075.00	0 56.414	40.336	112.954	112.953	132.104	0.85503
12	0	+1.2154	0	0.2850	1.5	1075.00	0 42.544	30.419	114.442	114.446	133.982	0.85416
13	0	0	-1.2154	0.2850	1.400	1000	48.751	34.857	141.977	141.976	166.072	0.85491
14	0	0	+1.2154		1.400	1150	48.751	34.857	95.386	95.385	111.623	0.85453
15	0	0	0	0.2850	1.400	1075.00	0 48.751	34.857	113.701	113.701	133.023	0.85475

Рисунок 3 План-матрица эксперимента при расчете средних значений напряжения течения металла и коэффициента учета истории нагружения

Рисунок 4 Окно программы расчета зависимости степени деформации ε от времени τ по длине очага деформации при прокатке (для стали марки XBГ)

На рисунке 5 показано окно программы расчета зависимости скорости деформации U и напряжения течения металла σ от времени τ по длине очага при прокатке. Метод расчета изложен в работе [4]. При этом учитываются кривые распределения в очаге степени ε и скорости деформации U, а также предусматривается построение (на базе сплайн-интерполяции экспериментальных кривых деформационного упрочнения) соответствующей кривой распределения σ с учетом истории процесса нагружения на основе уравнения Φ . Надаи.

Для опыта № 1 (рис. 3) представлены графические зависимости $\varepsilon(\tau)$, $U(\tau)$, $T(\tau)$, $\sigma(\tau)$ (рис. 6) по длине очага при прокатке (для стали марки ХВГ).

На рисунке 5 в предпоследней строке нижней части таблицы представлен ряд значений функции σ , найденных с учетом истории процесса нагружения на основе уравнения А. Надаи. Используя эти значе-

ния, определили величину среднего в очаге деформации значения напряжения течения металла $\sigma_1 = 133.8~M\Pi a$. Расчет соответствующего интеграла при решении уравнения А. Надаи выполнялся на основе данных, получаемых путем сплайнинтерполяции экспериментальных кривых деформационного упрочнения [4].

На основе $\sigma_{\mathfrak{I}\mathsf{KCN}}$ определили величину среднего в очаге деформации значения напряжения течения металла $\sigma_2=133.8~M\Pi a$. Значения σ_1 и σ_2 , которые относятся к опыту N_2 1, указаны в таблице на рисун-

ке 3. Необходимо обратить внимание на то, что соответствующие значения напряжений σ и $\sigma_{\mathfrak{I}\kappa cn}$, определенные с использованием различных методов, совпадают с высокой точностью. Соответственно, равны между собой величины σ_1 и σ_2 .

Величину среднего в очаге деформации значения напряжения течения металла $\sigma_3 = 156.6~M\Pi a$ определили путем сплайнинтерполяции кривых деформационного упрочнения с учетом значений степени и скорости деформации, найденных по формулам (1) и (4) соответственно. Это значение σ_3 , которое также относится к опыту № 1, указано в таблице на рисунке 3. Коэффициент Ku = 0.85, также указанный в этой таблице, определили по формуле (6) на основе значений соответствующих величин $\sigma_1 = 133.8~M\Pi a$ и $\sigma_3 = 156.6~M\Pi a$.

Расчеты 15-ти коэффициентов Ku по план-матрице, представленной на рисунке 3, выполнены для того, чтобы проверить степень влияния на них факторов ε ,

 L/h_{cp} , T. Отметим, что в расчетах не учитывали изменение температуры T по длине очага деформации, хотя метод и программа [4] такую возможность дают.

Для стали марки ХВГ коэффициент Ku получен в интервале 0.853—0.856, то есть практически он мало зависит от факторов ε , L/h_{cp} , T. Аналогичный результат получен и для других марок сталей.

Безусловно, выбран довольно узкий диапазон изменения факторов ε , L/h_{cp} (см. рис. 2). Это связано с тем, чтобы для значительного количества марок сталей имелась возможность выполнить решение поставленной задачи в этом диапазоне факторов путем сплайн-интерполяции экспериментальной цифровой информации о кривых деформационного упрочнения (то есть без привлечения эмпирических формул для σ и без выполнения расчетов σ по длине очага деформации в режиме экстраполяции).

	дания инфор информаци			С расчет є	noU ε(1)		С расче	πτnoU,ε	τ(1)		≠ const Δ7	10		✓ ок
<i>i</i>	1 [2	3	4	5	6	7	8	9	10	1		_	Количество
	.001499 0	.002922 0	.004278 0	.005574 0	.006821 (0.008025	0.009197	0.010343	0.011473	0.012595				дополнитель точек на ках
. ,	.052422 0	099081 0	.140060 0	.175432 0	.205261	0.229597	0.248483	0.261950	0.270021	0.272710				интервале
(1/cex)														
(zp að .C)	1013.292	1013.292	1013.292	1013.292	1013.292	1013.292	1013.292	1013.292	1013.292	1013.292				
4													▶ k	10 Про
						Pes	ультаты ра	асчета						
i	1	2	3	4	5	Pes;	јльтаты ра	всчета 8	9	10				
і т (сек)	1 0.001499	2 0.002732	3 0.003965	4 0.005198	5 0.006431		7	8			5			
1 1				0.005198 0.165590	0.006431 0.196401	6 0.007663 0.222790	7 0.00889	8 0.0101	29 0.0113	2 0.01259				
t (cek)	0.001499 0.052422 32.789178	0.002732 0.093026 31.782925	0.003965 0.130932 29.493582	0.005198 0.165590 26.608283	0.006431 0.196401 23.261905	6 0.007663 0.222790 5 19.41238	7 3 0.00889 0 0.24411 2 15.0794	8 06 0.0101 6 0.2598 88 10.3222	29 0.0113 33 0.2694 290 5.1479	62 0.01259 65 0.27271 66 2.39661	3			
t (сек) є и(1/сек) Т (град. С	0.001499 0.052422 32.789178 1013.292	0.002732 0.093026 31.782925 1013.292	0.003965 0.130932 29.493582 1013.292	0.005198 0.165590 26.608283 1013.292	0.006431 0.196401 23.261905 1013.292	6 0.007663 0.222790 5 19.41238 1013.293	7 3 0.00889 0 0.24411 2 15.0794 2 1013.29	8 96 0.0101 96 0.2598 98 10.3222 92 1013.2	29 0.0113 33 0.2694 290 5.1479 92 1013.2	0.01259 0.27271 06 2.39661 02 1013.29	3			
t (cek) ε u(1/cek) T (εραδ.C δσ/δε	0.001499 0.052422 32.789178) 1013.292 380.05264	0.002732 0.093026 31.782925 1013.292 359.37337	0.003965 0.130932 29.493582 1013.292 299.71193	0.005198 0.165590 26.608283 1013.292 269.27883	0.006431 0.196401 23.261905 1013.292 196.61787	6 0.007663 0.22279(5 19.41238 1013.293 7 111.2066	7 3 0.00889 0 0.24411 2 15.0794 2 1013.29 8 101.625	8 96 0.0101 16 0.2598 88 10.3222 1013.2 79 107.036	29 0.0113 33 0.2694 290 5.1479 92 1013.2 314 97.932	62 0.01259 65 0.27271 66 2.39661 62 1013.29 62 89.7586	2			
τ (cek) ε u(1/cek) Τ (εραδ.C ∂σ/∂ε ∂σ/∂υ	0.001499 0.052422 32.789178 1013.292 380.05264 0.36668	0.002732 0.093026 31.782925 1013.292 359.37337 0.41868	0.003965 0.130932 29.493582 1013.292 299.71193 0.44797	0.005198 0.165590 26.608283 1013.292 269.27883 0.46324	0.006431 0.196401 23.261905 1013.292 196.61787 0.51571	6 0.00766: 0.22279(19.41238 1013.29); 111.2066 0.62151	7 3 0.00888 0 0.24411 2 15.0794 2 1013.29 8 101.625 0.7026	8 96 0.0101 96 0.2598 88 10.3222 92 1013.2 79 107.036 7 0.8034	29 0.0113 33 0.2694 290 5.1479 92 1013.2 514 97.932 17 2.7534	0.01259 0.27271 06 2.39661 02 1013.29 02 89.7586 4 4.98821	2			
τ (cek) ε u(1/cek) Τ (εραδ.C ∂σ/∂ε ∂σ/∂υ ∂σ/∂Τ	0.001499 0.052422 32.789178) 1013.292 380.05264 0.36668 -0.34143	0.002732 0.093026 31.782925 1013.292 359.37337 0.41868 -0.39087	0.003965 0.130932 29.493582 1013.292 299.71193 0.44797 -0.42804	0.005198 0.165590 26.608283 1013.292 269.27883 0.46324 -0.45576	0.006431 0.196401 23.261905 1013.292 196.61787 0.51571 -0.47460	6 0.007663 0.222790 5 19.41238 1013.290 7 111.2066 0.62151 -0.48020	7 3 0.00889 0 0.24411 2 15.0794 2 1013.29 8 101.625 0.7026 -0.4779	8 96 0.0101 96 0.2598 98 10.3222 1013.2 107.036 7 0.8034 5 -0.4718	29 0.0113 33 0.2694 290 5.1479 92 1013.2 314 97.932 47 2.7534 33 -0.4462	0.01259 0.27271 06 2.39661 02 1013.29 22 89.7586 4 4.98821 7 -0.41624	2			
τ (cek) ε u(1/cek) Τ (εραδ.C ∂σ/∂ε ∂σ/∂u ∂σ/∂Τ dε/dτ	0.001499 0.052422 32.789178 1013.292 380.05264 0.36668 -0.34143 32.78918	0.002732 0.093026 31.782925 1013.292 359.37337 0.41868 -0.39087 32.13849	0.003965 0.130932 29.493582 1013.292 299.71193 0.44797 -0.42804 29.48564	0.005198 0.165590 26.608283 1013.292 269.27883 0.46324 -0.45576 26.65135	0.006431 0.196401 23.261905 1013.292 196.61787 0.51571 -0.47460 23.27387	6 0.007663 0.222790 5 19.41238 1013.290 7 111.2066 0.62151 -0.48020 19.44973	7 3 0.00889 0 0.24411 2 15.0794 2 1013.29 8 101.625 0.7026 -0.4779 7 15.0893	8 96 0.0101 16 0.2598 88 10.3222 12 1013.2 17 107.036 17 0.8034 5 -0.4718 18 10.338	29 0.0113 33 0.2694 290 5.1479 92 1013.2 514 97.932 17 2.7534 03 -0.4462 89 5.2493	0.01259 0.07271 0.027271 0.023661 0.023661 0.010329 0.010329 0.041624 0.041624 0.041624 0.041624 0.041624	2 2			
t (cek) s u(1/cek) T (epað.C da/ds da/dt ds/dt du/dt	0.001499 0.052422 32.789178 1013.292 380.05264 0.36668 -0.34143 32.78918 -880.7966	0.002732 0.093026 31.782925 1013.292 359.37337 0.41868 -0.39087 32.13849 -1170.6307	0.003965 0.130932 29.493582 1013.292 299.71193 0.44797 -0.42804 29.48564 -2248.6828	0.005198 0.165590 26.608283 1013.292 269.27883 0.46324 -0.45576 26.65135 -2517.3447	0.006431 0.196401 23.261908 1013.292 196.61787 0.51571 -0.47460 23.27387 -2916.4112	6 0.00766; 0.22279(5 19.41238 1013.29; 111.2066 0.62151 -0.48020 19.4497; 2 -3326.766	7 3 0.00888 0 0.24411 2 15.0794 2 1013.29 8 101.625 0.7026 -0.4779 7 15.0893 0 -3697.25	8 8 96 0.0101 16 0.2598 10.3222 1013.2 79 107.036 7 0.8034 5 -0.4718 38 10.338 49 4003.56	29 0.0113 333 0.2694 290 5.1479 92 1013.2 514 97.932 47 2.7534 33 -0.4462 89 5.2493 580 -3523.42	0.01259 0.27271 06 2.39661 1013.29 22 89.7586 4 4.98821 7 -0.41624 9 2.39661 58 -2122.426	2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
t (cek) s u(1/cek) T (epað.C da/ds da/dt de/dt dt/dt	0.001499 0.052422 32.789178 1013.292 380.05264 0.36668 -0.34143 32.78918 -880.7966 -0.00000	0.002732 0.093026 31.782925 1013.292 359.37337 0.41868 -0.39087 32.13849 -1170.6307 -0.00000	0.003965 0.130932 29.493582 1013.292 299.71193 0.44797 -0.42804 29.48564 -2248.6828 -0.00000	0.005198 0.165590 26.608283 1013.292 269.27883 0.46324 -0.45576 26.65135 -2517.3447 -0.00000	0.006431 0.196401 23.261905 1013.292 196.61787 0.51571 -0.47460 23.27387 -2916.4112	6 0.007663 0.222796 19.41238 1013.293 111.2066 0.62151 -0.48020 19.44977 2.3326.766	7 8 0.00888 0 0.24411 2 15.0794 2 1013.29 8 101.625 0.7026 -0.4779 7 15.0893 0 -3697.25 -0.0000	8 8 0.0101 6 0.2598 88 10.3222 02 1013.2 79 107.036 7 0.8034 5 -0.4718 88 10.338 49 4003.56 0 -0.0000	29 0.0113 333 0.2694 290 5.1479 92 1013.2 514 97.932 17 2.7534 33 -0.4462 89 5.2493 580 -3523.42	52 0.01259 55 0.27271 56 2.39661 52 1013.29 52 89.7586 4 4.98821 7 -0.41624 9 2.39661 58 -2122.426 0 -0.00000	22 2 2000			
t (cek) s u(1/cek) T (epað.C da/ds da/dt ds/dt du/dt	0.001499 0.052422 32.789178 1013.292 380.05264 0.36668 -0.34143 32.78918 -880.7966	0.002732 0.093026 31.782925 1013.292 359.37337 0.41868 -0.39087 32.13849 -1170.6307 -0.00000	0.003965 0.130932 29.493582 1013.292 299.71193 0.44797 -0.42804 29.48564 -2248.6828 -0.00000	0.005198 0.165590 26.608283 1013.292 269.27883 0.46324 -0.45576 26.65135 -2517.3447 -0.00000 6010.5045	0.006431 0.196401 23.261905 1013.292 196.61787 0.51571 -0.47460 23.27387 -2916.4112 0.00000 3072.0401	6 0.00766; 0.22279; 5 19.41238 1013.29; 7 111.2066 0.62151 -0.48020 19.4497; 2 -3326.766 0.00000 95.3115	7 3 0.00888 0 0.24411 2 15.0794 2 1013.29 8 101.625 0.7026 -0.4779 7 15.0893 0 3697.25 -0.0000 -1064.49	8 96 0.0101 16 0.2598 88 10.3222 1013.2 107.036 7 0.8034 5 -0.4718 10.338 10.338 10.338 10.338 10.3418 10.3	29 0.0113 33 0.2694 290 5.1479 97.932 1013.2	32 0.01259 35 0.27271 36 2.39661 32 1013.29 32 89.7586 4 4.98821 7 -0.41624 9 2.39661 58 -2122.426 0 -0.0000 24 -10371.95	0			

Рисунок 5 Окно программы расчета зависимости скорости деформации U и напряжения течения металла σ от времени τ по длине очага при прокатке

Рисунок 6 Окно программы визуализации графических зависимостей $\varepsilon(\tau)$, $U(\tau)$, $\sigma(\tau)$ по длине очага при прокатке (для стали марки XBГ)

В таблице 1 представлены значения коэффициентов Ku для более чем 60-ти конструкционных, инструментальных и нержавеющих марок сталей. Расчеты выполнены в окнах программы, показанных на рисунках 3–5, по единой методике. Выделено несколько групп марок сталей, для которых определены указанные коэффициенты. Найденные значения лежат в диапазоне 0.75 < Ku (ср.) ≤ 1.05 . Представленные значения округлены до двух знаков после запятой.

Таблица I Значения коэффициента Ku для конструкционных, инструментальных и нержавеющих марок сталей

	Марка стали	Ku (min)	Ku (max)	Ки (ср.)					
1	2	3	4	5					
	$(0.75 < Ku \text{ (cp.)} \le 0.80)$								
1	[2], Сталь 45, стр. 153, рис. 65	0.76	0.77	0.77					
2	[1], Сталь 45, стр. 105, рис. 28	0.77	0.78	0.78					
3	[3], 18ХГТ, стр. 82, рис. II. 44–45	0.78	0.78	0.78					
4	[3], 20ХНГР, стр. 84, рис. II. 50–51	0.79	0.80	0.80					
5	[1], 14ГН, стр. 119, рис. 49	0.79	0.81	0.80					
6	[1], 15СХНД, стр. 133, рис. 71	0.79	0.80	0.80					
7	[1], У8, стр.156, рис.107	0.79	0.80	0.80					
8	[1], У12А, стр.159, рис.111	0.78	0.81	0.80					
9	[3], У8, стр.75, рис. II. 23-24	0.79	0.80	0.80					

Продолжение таблицы 1

			прооблжен	ие таолицы 1
1	2	3	4	5
	$(0.80 < Ku \text{ (cp.)} \le 0.00$.85)		
10	[1], СТ3, стр. 101, рис. 22	0.80	0.81	0.81
11	[1], ШХ15, стр. 163, рис. 118	0.80	0.81	0.81
12	[3], Сталь 20, стр. 71, рис. II. 10–11	0.80	0.81	0.81
13	[2], 18ХНВА, стр. 87, рис. 37	0.80	0.86	0.83
14	[3], 40Х, стр. 76, рис. II. 26–27	0.81	0.81	0.81
15	[3], ШХ15, стр. 78, рис. П. 32–33	0.80	0.81	0.81
16	[1], ХВГ, стр. 137, рис. 79	0.81	0.82	0.82
17	[1], Сталь 20, стр. 98, рис. 18	0.81	0.82	0.82
18	[1], Сталь 45, стр. 105, рис. 29	0.81	0.82	0.82
19	[1], 40Х, стр. 122, рис. 52	0.81	0.82	0.82
20	[1], 10Х17Н13М2Т, стр. 221, рис. 195	0.81	0.82	0.82
21	[1], 12Х13, стр. 187, рис. 142	0.81	0.83	0.82
22	[1], 18ХНВА, стр. 137, рис. 80	0.80	0.84	0.82
23	[1], 60С2, стр. 161, рис. 114	0.81	0.82	0.82
24	[2], У12А, стр. 83, рис. 33	0.81	0.82	0.82
25	[2], ХВГ, стр. 85, рис. 35	0.81	0.82	0.82
26	[1], Сталь 55, стр. 108, рис. 37	0.81	0.82	0.82
27	[3], 08КП, стр. 69, рис. II. 5–6	0.82	0.82	0.82
28	[3], 14ГН, стр. 80, рис. II. 38–39	0.81	0.82	0.82
29	[3], 45ХН, стр. 83, рис. П. 47–48	0.82	0.82	0.82
30	[3], 60С2, стр. 86, рис. II. 56–57	0.81	0.82	0.82
31	[3], Ст3, стр. 72, рис. II. 14–15	0.82	0.82	0.82
32	[3], Ст6, стр. 74, рис. II. 20–21	0.81	0.82	0.82
33	[3], Сталь 08КП, стр. 69, рис. II. 5–6	0.82	0.82	0.82
34	[1], 12ХН3А, стр. 146, рис. 97	0.82	0.84	0.83
35	[2], 2Х18Н9,стр. 89,рис. 39	0.80	0.86	0.83
36	[3], 15ХСНД, стр. 79, рис. II. 35–36	0.82	0.83	0.83
37	[3], 30ХГСА, стр. 85, рис. II. 53–54	0.82	0.83	0.83
38	[3], Сталь 45, стр. 73, рис. ІІ. 17–18	0.82	0.83	0.83
39	[1], Р18, стр. 169, рис. 130	0.83	0.84	0.84
40	[3], Х18Н12М2Т, стр. 102, рис. И. 104–105	0.84	0.84	0.84
41	[3], 12ХНЗА, стр. 81, рис. II. 41–42	0.83	0.84	0.84
42	[3], Р18, стр. 103, рис. II. 107–108	0.84	0.84	0.84
43	[1], 12Х18Н9Т, стр. 211, рис. 181	0.83	0.86	0.85
44	[1], 60С2, стр. 161, рис. 113	0.84	0.85	0.85
45	[2], 60С2, стр. 84, рис. 34	0.84	0.86	0.85
46	[3], Сталь типа хромомолибденовой, стр. 88,			
	рис. II. 62–63	0.85	0.85	0.85
47	[3], Х18Н9Т, стр. 100, рис. II. 98–99	0.85	0.85	0.85
	$(0.85 < Ku \text{ (cp.)} \le 0.00$			
48	[3], ХВГ, стр. 92, рис. II. 74–75	0.85	0.86	0.86
49	[1], 10Х17Н13М2Т, стр. 219, рис. 192	0.84	0.88	0.86
50	[1], 12Х18Н9Т, стр. 207, рис. 177	0.85	0.86	0.86
51	[1], 40Х13, стр. 191, рис. 150	0.85	0.87	0.86
52	[1], Х17Н2, стр. 200, рис. 164	0.85	0.87	0.86
53	[1], X12, стр. 185, рис. 139	0.83	0.89	0.86
54	[2], Х18Н9Т, стр. 88, рис. 38	0.85	0.86	0.86
	• •			

Продолжение таблицы 1

1	2	3	4	5					
55	[3], 4Х13, стр. 97, рис. II. 89–90	0.85	0.86	0.86					
56	[3], Сталь типа молибденомарганцовистой, стр. 87, рис. II. 59–60	0.85	0.86	0.86					
57	[3], Сталь типа хромоникельмолибденовой, стр. 90, рис. II. 68–69	0.85	0.86	0.86					
58	[3], Х17Н2, стр. 99, рис. II. 95–96	0.86	0.86	0.86					
59	[1], 40Х13, стр. 190, рис. 149	0.86	0.87	0.87					
60	[2], 4Х13, стр. 86, рис. 36	0.86	0.88	0.87					
61	[3], 18ХНВА, стр. 91, рис. II. 71–72	0.87	0.87	0.87					
62	[3], Сталь типа кремнемарганцовистой, стр. 86, рис. II. 65–66	0.86	0.87	0.87					
$(0.9 < Ku \text{ (cp.)} \le 1.0)$									
63	[3], ЭП311, стр. 110, рис. II. 128–129	0.92	0.93	0.93					
	$(1.0 < Ku \text{ (cp.)} \le 1.05)$								
64	[3], ЭП220, стр. 112, рис. II. 134–135	1.03	1.05	1.04					

Выводы и направление дальнейших исследований. Зависимость напряжения течения металла по длине очага при горячей прокатке определили с учетом истории процесса нагружения на основе уравнения А. Надаи, а также сплайн-интерполяции экспериментальных кривых деформационного упрочнения и кривых распределения в очаге степени и скорости деформации.

Показано, что определение на базе экспериментальных кривых деформационного упрочнения среднего в очаге значения на-

пряжения течения металла в зависимости от значений степени и скорости деформации, рассчитанных по формулам С. Экелунда или А. И. Целикова, не учитывает влияния особенностей изменения этих величин по длине очага при прокатке, как правило, дает завышенный результат и требует учета коэффициента истории нагружения Ku. Получены значения коэффициента Ku для более чем 60-ти конструкционных, инструментальных и нержавеющих марок сталей.

Библиографический список

- 1. Полухин, П. И. Сопротивление пластической деформации металлов и сплавов [Текст] : справочник / П. И. Полухин, Г. Я. Гун, А. М. Галкин. М. : Металлургия, 1983. 352 с.
- 2. Применение теории ползучести при обработке металлов давлением [Текст] / А. А. Поздеев [и др.]. М.: Металлургия, 1973. 192 с.
- 3. Теория прокатки [Текст] : справочник / А. И. Целиков [и др.]. М. : Металлургия, 1982. 335 с.
- 4. Методы компьютерного моделирования напряжения течения металла в процессах горячей пластической деформации [Текст]: учебное пособие для обучающихся образовательных учреждений высшего профессионального образования / А. В. Яковченко, С. А. Снитко, Н. И. Ивлева. Донецк: ДонНТУ, 2018. 197 с.
 - © Яковченко А. В.
 - © <u>Кравцова С. И</u>.

Рекомендована к печати к.т.н., доц., зав. каф. ОМДиМ ДонГТИ Денищенко П. Н., доц., зав. каф. ОМД ДонНТУ Снитко С. А.

Статья поступила в редакцию 30.09.2020.

Doctor of Technical Sciences Yakovchenko A. V., Kravtsova S. I. (DonSTI, Alchevsk, LPR, mond1991@mail.ru)

COEFFICIENT FOR CONSIDERING LOADING HISTORY AT CALCULATING METAL FLOW STRESS IN HOT ROLLING PROCESSES

The paper is devoted to determining the average stress value of metal flow in the zone on the basis of experimental hardening curves, depending on the values of degree and strain rate calculated by the formulas C. Ekelund or A. I. Tselikov, does not take into account the influence of features of changes in these values along the length of the zone during hot rolling, as a rule, gives an overestimated result and requires to take into account the Ki coefficient of loading history. The values of the Ki coefficients for more than 60 structural, tool and stainless steel grades are obtained.

Key words: A. Nadai equation, metal flow stress distribution curve during hot rolling, computer database of digital information about strain hardening curves, spline-interpolation of hardening curves, coefficient for considering loading history.