УДК 621.771.23(075.8)

д.т.н. Яковченко А. В., Кравцова С. И. (ДонГТИ, г. Алчевск, ЛНР, mond1991@mail.ru)

КОЭФФИЦИЕНТ УЧЕТА ИСТОРИИ НАГРУЖЕНИЯ ПРИ РАСЧЕТЕ НАПРЯЖЕНИЯ ТЕЧЕНИЯ МЕТАЛЛА В ПРОЦЕССАХ ГОРЯЧЕЙ ПРОКАТКИ

Определение на базе экспериментальных кривых упрочнения среднего в очаге значения напряжения течения металла в зависимости от значений степени и скорости деформации, рассчитанных по формулам С. Экелунда или А. И. Целикова, не учитывает влияния особенностей изменения этих величин по длине очага при горячей прокатке, как правило, дает завышенный результат и требует учета коэффициента истории нагружения Ки. Получены значения коэффициентов Ки для более чем 60-ти конструкционных, инструментальных и нержавеющих марок сталей.

Ключевые слова: уравнение А. Надаи, кривая распределения напряжения течения металла при горячей прокатке, компьютерная база цифровой информации о кривых деформационного упрочнения, сплайн-интерполяция кривых упрочнения, коэффициент учета истории нагружения.

Проблема и ее связь с научными и практическими задачами. Напряжение течения металла σ является одной из главных составляющих по степени влияния на результаты расчетов энергосиловых параметров в процессах горячей прокатки. Совершенствование метода расчета среднего в очаге деформации напряжения течения металла является актуальной задачей.

Известно, что напряжение течения металла при горячей деформации зависит в основном от температуры T, степени ε и скорости деформации U. В технической литературе имеется обширная информация об экспериментальных кривых деформационного упрочнения сталей, например, [1-3], в которой σ представлено в зависимости от степени деформации ε или величины суммарной относительной деформации $\overline{\varepsilon}$

$$\varepsilon = \frac{H - h}{H},\tag{1}$$

$$\overline{\varepsilon} = \ln \frac{H}{h}, \qquad (2)$$

где *H*, *h* — высота полосы до и после обжатия соответственно.

Известно соотношение между ε и $\overline{\varepsilon}$, например, [4]

$$\overline{\varepsilon} = \ln(1-\varepsilon)^{-1}, \ \varepsilon = 1 - \exp(-\overline{\varepsilon}).$$
 (3)

Величина средней в очаге скорости деформации *U* может быть определена по близким формулам С. Экелунда или А. И. Целикова

$$U_{cp} = \frac{2V_B \sqrt{(H-h)/R}}{H+h},$$
 (4)

$$U_{cp} = \frac{V_1 \varepsilon}{L},\tag{5}$$

где V_B — окружная скорость вращения валков, имеющих радиус R; V_1 — скорость металла на выходе из очага деформации; L — длина очага деформации $L = \sqrt{R(H-h)}$.

Наиболее точное значение среднего в очаге деформации при горячей прокатке напряжения течения металла (обозначим эту величину σ_1) можно получить на основе соответствующей кривой распределения σ по длине очага, построенной на базе экспериментальных кривых деформационного упрочнения для рассматриваемой стали с учетом кривых распределения

по длине очага степени ε и скорости деформации U. В работе [4] представлены метод и компьютерная программа расчета кривой распределения напряжения течения металла с учетом истории процесса нагружения на основе уравнения А. Надаи, а также сплайн-интерполяции экспериментальных кривых деформационного упрочнения и кривых распределения в очаге степени и скорости деформации.

Некоторая погрешность при расчете среднего в очаге деформации при горячей прокатке значения напряжения течения металла будет получена в случае его определения на базе экспериментальных кривых деформационного упрочнения с учетом средних значений степени и скорости деформации, найденных из соответствующих кривых распределения этих величин по длине очага деформации.

Еще большая погрешность при расчете среднего в очаге деформации при горячей прокатке значения напряжения течения металла (обозначим эту величину σ_3) будет получена в случае его определения на базе экспериментальных кривых деформационного упрочнения с учетом значений степени и скорости деформации, найденных по формулам (1–5). Это связано с тем, что они отличаются от средних значений, найденных на основе соответствующих кривых распределения по длине очага деформации.

Постановка задачи. Введем коэффициент учета истории нагружения (Ku) при расчете среднего в очаге деформации напряжения течения металла в процессах горячей прокатки как отношение величин σ_1 / σ_3 .

Соответственно, если для конкретной марки стали известен коэффициент Ku, а также среднее в очаге деформации при горячей прокатке значение σ_3 , которое было определено с использованием формул (1–5), то уточненное значение средней величины напряжения течения металла можно будет определить следующим образом

$$\sigma_1 = K u \cdot \sigma_3 \,. \tag{6}$$

Поставлена задача разработки метода определения коэффициента *Ки* и его значений для широкого марочного сортамента конструкционных, инструментальных и нержавеющих марок сталей.

Изложение материала и его результаты. Определение коэффициента *Ки* выполним на примере инструментальной легированной стали марки ХВГ. На первом этапе необходимо на основе метода, изложенного в работе [4], создать компьютерную базу цифровой информации о кривых деформационного упрочнения стали марки ХВГ (рис. 1) (полная таблица базы представлена в работе [4]).

Коэффициент учета истории нагружения Ku при расчете среднего в очаге деформации при горячей прокатке значения напряжения течения металла определяли также в зависимости от трех факторов: ε , L/h_{cp} , T.

Исходя из требования использования в процессе решения поставленной задачи только экспериментальной информации по кривым деформационного упрочнения (то есть без привлечения эмпирических формул) были выбраны общие для всех марок сталей пределы изменения этих факторов, которые представлены на рисунке 2.

Рисунок 1 Окно формирования компьютерной базы цифровой информации о кривых деформационного упрочнения стали марки ХВГ

На рисунке 3 показано окно программы, в котором автоматически формируется матрица расчетного планируемого эксперимента. Эксперимент спланирован по плану второго порядка, применено центральное композиционное ортогональное планирование в зависимости от трех факторов: ε , L / h_{cp} , T.

При этом план-матрица для 3-х факторов содержит 15 опытов. Для каждого опыта выполнен расчет значений *H*,*h*,

удовлетворяющих соответствующим факторам ε , L/h_{cp} .

На рисунке 4 показано окно программы расчета геометрических параметров очага деформации при прокатке полосы на гладких цилиндрических валках, а также зависимости степени деформации ε от времени τ по длине очага при прокатке на базе метода [4].

Рисунок 2 Пределы изменения факторов ε , L / h_{cp} , *T*, которые использовали при определении коэффициента учета истории нагружения *Ku*

талей\[3]:ХВ	Г,стр.92, рис.І	1. 0.27		2.2								
				J.3	1.3		1.5	10	000	1150		
			Кодовые и натуральные значения факторов									
		Код	овые значения	я факторов	-1.2154	-1		0	+1	+1.215	54	
			Натуральные	з	0.27	1	0.2727	0.2850	0.2973	0.3		
			значения	L/hcp	1.3		1.318	1.400	1.482	1.5		
			факторов	Т (град.С)	1000	11	1013.292 1075.000		1136.708	1150		
				Плаг	н-матри	ща экспер	имента					
	×1	×2	X3	з	L/hcp	Т (град.С)	Н (мм)	h (мм)	σ ₁ (МПа)	σ ₂ (МПа)	σ ₃ (МПа)	Ки= ₁ / с
1	-1	-1	-1	0.2727	1.318	1013.292	51.872	37.726	133.841	133.843	156.570	0.85483
2	+1	-1	-1	0.2973	1.318	1013.292	58.014	40.766	136.083	136.082	159.032	0.85569
3	-1	+1	-1	0.2727	1.482	1013.292	41.148	29.927	135.320	135.320	158.393	0.85433
4	+1	+1	-1	0.2973	1.482	1013.292	46.051	32.360	137.542	137.543	160.882	0.85492
5	-1	-1	+1	0.2727	1.318	1136.708	51.872	37.726	96.840	96.840	113.318	0.85459
6	+1	-1	+1	0.2973	1.318	1136.708	58.014	40.766	98.466	98.465	115.101	0.85547
7	-1	+1	+1	0.2727	1.482	1136.708	41.148	29.927	97.899	97.899	114.637	0.85399
8	+1	+1	+1	0.2973	1.482	1136.708	46.051	32.360	99.508	99.510	116.440	0.85459
9	-1.2154	0	0	0.27	1.400	1075.000	45.462	33.187	112.515	112.515	131.664	0.85456
10) +1.2154	0	0	0.3	1.400	1075.000	52.134	36.494	114.787	114.787	134.182	0.85546
11	0	-1.2154	0	0.2850	1.3	1075.000	56.414	40.336	112.954	112.953	132.104	0.85503
12	2 0	+1.2154	0	0.2850	1.5	1075.000	42.544	30.419	114.442	114.446	133.982	0.85416
13	8 0	0	-1.2154	0.2850	1.400	1000	48.751	34.857	141.977	141.976	166.072	0.85491
14	0	0	+1.2154	0.2850	1.400	1150	48.751	34.857	95.386	95.385	111.623	0.85453
15	5 0	0	0	0.2850	1.400	1075.000	48.751	34.857	113.701	113.701	133.023	0.85475

Рисунок 3 План-матрица эксперимента при расчете средних значений напряжения течения металла и коэффициента учета истории нагружения

				I.	расчет мас	сивов & и 1	г по длине	очага дефо	рмации			
0 1 2 - k				H h	~~~~	L)	Ko.	СХОДНАЯ ИН Н (мм) h (мм) f (мм) f (моф) f (моф) f (моф) f (моф) f (моф) f (моф) f (мм) f (mm) f (mm)	Формация 51,872 37,726 250 0.166 200 3.292 3.292 азбиения рымации	С 5 : С 5 = Козффии	$=\frac{H-h_t}{H}$ $Ln\left(\frac{H}{h_t}\right)$ $uuehtt Tpehusa$
						D						
_,			-		E	resy	њтаты рас	чета	0	10	 1	
1	1	2	3	4	5	6	таты рас 7 0.000107	чета 8 0.010342	9	10		
ί τ(ceκ)	1	2	3 0.004278	4	5 0.006821	6 0.008025	7 0.009197	чета 8 0.010343	9 0.011473	10 0.012595		
ί τ (ceκ) ε	1 0.001499 0.052422	2 0.002922 0.099081	3 0.004278 0.140060	4 0.005574 0.175432	5 0.006821 0.205261	6 0.008025 0.229597	7 0.009197 0.248483	ета 8 0.010343 0.261950	9 0.011473 0.270021	10 0.012595 0.272710		
ί τ(ceκ) ε Γ(apad.C)	1 0.001499 0.052422 1013.292	2 0.002922 0.099081 1013.292	3 0.004278 0.140060 1013.292 41.222	4 0.005574 0.175432 1013.292	5 0.006821 0.205261 1013.292	6 0.008025 0.229597 1013.292 23.619	7 0.009197 0.248483 1013.292	8 0.010343 0.261950 1013.292	9 0.011473 0.270021 1013.292	10 0.012595 0.272710 1013.292		
і t (сек) e T (град.С) у т (мм) E (мм)	1 0.001499 0.052422 1013.292 53.142	2 0.002922 0.099081 1013.292 47.237 245.497	3 0.004278 0.140060 1013.292 41.332	4 0.005574 0.175432 1013.292 35.428	5 0.006821 0.205261 1013.292 29.523 249.251	6 0.008025 0.229597 1013.292 23.619	7 0.009197 0.248483 1013.292 17.714	8 0.010343 0.261950 1013.292 11.809	9 0.011473 0.270021 1013.292 5.905	10 0.012595 0.272710 1013.292 -0.000		
і t (сек) є T (град.С) у T (мм) F ₁ (мм) F ₂ (мм)	1 0.001499 0.052422 1013.292 53.142 244.287 292.429	2 0.002922 0.099081 1013.292 47.237 245.497	3 0.004278 0.140060 1013.292 41.332 246.560 291.166	4 0.005574 0.175432 1013.292 35.428 247.477 290.249	5 0.006821 0.205261 1013.292 29.523 248.251 299.475	6 0.008025 0.229597 1013.292 23.619 248.882 298.844	7 0.009197 0.248483 1013.292 17.714 249.372 299.254	8 0.010343 0.261950 1013.292 11.809 249.721 299.005	9 0.011473 0.270021 1013.292 5.905 249.930 297.796	10 0.012595 0.272710 1013.292 -0.000 250.000		
і с (сек) с Г (град.С) у т (мм) F1 (мм) F2 (мм) F2 (мм)	1 0.001499 0.052422 1013.292 53.142 244.287 293.439 49.152	2 0.002922 0.099081 1013.292 47.237 245.497 292.229 46.732	3 0.004278 0.140060 1013.292 41.332 246.560 291.166 44.607	4 0.005574 0.175432 1013.292 35.428 247.477 290.249 42.372	5 0.006821 0.205261 1013.292 29.523 248.251 289.475 41.335	6 0.008025 0.229597 1013.292 23.619 248.882 288.844 29.952	7 0.009197 0.248483 1013.292 17.714 249.372 288.354 29.992	8 0.010343 0.261950 1013.292 11.809 249.721 288.005 39.304	9 0.011473 0.270021 1013.292 5.905 249.930 287.796 27.905	10 0.012595 0.272710 1013.292 -0.000 250.000 287.726 37.726		
і t (cex) e T(apad.C) y T (мм) F1 (мм) F2 (мм) hT (мм)	1 0.001499 0.052422 1013.292 53.142 244.287 293.439 49.153 4045 4	2 0.092922 0.099081 1013.292 47.237 245.497 292.229 46.732	3 0.004278 0.140060 1013.292 41.332 246.560 291.166 44.607 445.5	4 0.005574 0.175432 1013.292 35.428 247.477 290.249 42.772 46.49.9	5 0.006821 0.205261 1013.292 29.523 248.251 289.475 41.225 4933.2	6 0.008025 0.229597 1013.292 23.619 248.882 288.844 39.962 4975 7	7 0.009197 0.248483 1013.292 17.714 249.372 288.354 38.983 5100.7	8 0.010343 0.261950 1013.292 11.809 249.721 288.005 38.284 5192.9	9 0.011473 0.270021 1013.292 5.905 249.930 287.796 37.865 5.51.2	10 0.012595 0.272710 1013.292 -0.000 250.000 287.726 37.726		
$i \\ \tau(ce\kappa) \\ \varepsilon \\ T(zpad.C) \\ y_T(MM) \\ F_1(MM) \\ F_2(MM) \\ h_T(MM) \\ h_T(MM) \\ V_y(\frac{MM}{ce\kappa})$	1 0.001499 0.052422 1013.292 53.142 244.287 293.439 49.153 4045.4	2 0.002922 0.099081 1013.292 47.237 245.497 292.229 46.732 4254.9	3 0.004278 0.140060 1013.292 41.332 246.560 291.166 44.607 4457.6	4 0.005574 0.175432 1013.292 35.428 247.477 290.249 42.772 4648.8	5 0.006821 0.205261 1013.292 29.523 248.251 289.475 41.225 4823.3	6 0.008025 0.229597 1013.292 23.619 248.882 288.844 39.962 4975.7	7 0.009197 0.248483 1013.292 17.714 249.372 288.354 38.983 5100.7	8 0.010343 0.261950 1013.292 11.809 249.721 288.005 38.284 5193.8	9 0.011473 0.270021 1013.292 5.905 249.930 287.796 37.865 5251.2	10 0.012595 0.272710 1013.292 -0.000 250.000 287.726 37.726 37.726		

Рисунок 4 Окно программы расчета зависимости степени деформации ε от времени τ по длине очага деформации при прокатке (для стали марки ХВГ)

На рисунке 5 показано окно программы расчета зависимости скорости деформации U и напряжения течения металла σ от времени τ по длине очага при прокатке. Метод расчета изложен в работе [4]. При этом учитываются кривые распределения в очаге степени ε и скорости деформации U, а также предусматривается построение (на базе сплайн-интерполяции экспериментальных кривых деформационного упрочнения) соответствующей кривой распределения σ с учетом истории процесса нагружения на основе уравнения А. Надаи.

Для опыта № 1 (рис. 3) представлены графические зависимости $\varepsilon(\tau)$, $U(\tau)$, $T(\tau)$, $\sigma(\tau)$ (рис. 6) по длине очага при прокатке (для стали марки ХВГ).

На рисунке 5 в предпоследней строке нижней части таблицы представлен ряд значений функции σ , найденных с учетом истории процесса нагружения на основе уравнения А. Надаи. Используя эти значения, определили величину среднего в очаге деформации значения напряжения течения металла $\sigma_1 = 133.8 M\Pi a$. Расчет соответствующего интеграла при решении уравнения А. Надаи выполнялся на основе данных, получаемых путем сплайнинтерполяции экспериментальных кривых деформационного упрочнения [4].

В последней строке указанной таблицы представлен ряд значений функции $\sigma_{3\kappa cn}$, найденных непосредственно путем сплайн-интерполяции кривых деформационного упрочнения с учетом дискретных значений в очаге степени и скорости деформации, взятых из соответствующих кривых распределения ε и U.

На основе $\sigma_{3\kappa cn}$ определили величину среднего в очаге деформации значения напряжения течения металла $\sigma_2 = 133.8 \ M\Pi a$. Значения σ_1 и σ_2 , которые относятся к опыту № 1, указаны в таблице на рисун-

ке 3. Необходимо обратить внимание на то, что соответствующие значения напряжений σ и $\sigma_{3\kappa cn}$, определенные с использованием различных методов, совпадают с высокой точностью. Соответственно, равны между собой величины σ_1 и σ_2 .

Величину среднего в очаге деформации значения напряжения течения металла $\sigma_3 = 156.6 M\Pi a$ определили путем сплайнинтерполяции кривых деформационного упрочнения с учетом значений степени и скорости деформации, найденных по формулам (1) и (4) соответственно. Это значение σ_3 , которое также относится к опыту № 1, указано в таблице на рисунке 3. Коэффициент Ku = 0.85, также указанный в этой таблице, определили по формуле (6) на основе значений соответствующих величин $\sigma_1 = 133.8 M\Pi a$ и $\sigma_3 = 156.6 M\Pi a$.

Расчеты 15-ти коэффициентов Ku по план-матрице, представленной на рисунке 3, выполнены для того, чтобы проверить степень влияния на них факторов ε , L/h_{cp} , *T*. Отметим, что в расчетах не учитывали изменение температуры *T* по длине очага деформации, хотя метод и программа [4] такую возможность дают.

Для стали марки ХВГ коэффициент *Ки* получен в интервале 0.853–0.856, то есть практически он мало зависит от факторов ε , L/h_{cp} , *T*. Аналогичный результат получен и для других марок сталей.

Безусловно, выбран довольно узкий диапазон изменения факторов ε , L/h_{cp} (см. рис. 2). Это связано с тем, чтобы для значительного количества марок сталей имелась возможность выполнить решение поставленной задачи в этом диапазоне факторов путем сплайн-интерполяции экспериментальной цифровой информации о кривых деформационного упрочнения (то есть без привлечения эмпирических формул для σ и без выполнения расчетов σ по длине очага деформации в режиме экстраполяции).

Количест	гво						Исход	ная инфор	мация					
10	Сво	адания инфор я информаци	мации в тас я (• рас	иице нет U по 8	С расчет	εnoU ε(1)	С расч	πτnoU,ε	τ(1)		'≠const ΔT	10	🗸 ок
					1					,		,		
1	L	1	2	3	4	5	6	7	8	9	10			Количество
τ (ce	як)	0.001499 0	.002922	0.004278	0.005574	0.006821	0.008025	0.009197	0.010343	0.011473	0.012595			точек на каждом
ε		0.052422 0	.099081	0.140060	0.175432	0.205261	0.229597	0.248483	0.261950	0.270021	0.272710			интервале
u(1/	сек)													
T (zp	að.C)	1013.292	1013.292	1013.292	1013.292	1013.292	1013.292	1013.292	1013.292	1013.292	1013.292			
													► k	10 Просмот
Тип рас	чета													
	C	заданный м	омент врем	вни	€kp	авномерно р	распределен	ных значени	ıй k	10		E	Зыполнить)	<<Назад
Г			1 0	1 0		1 =			1 0		1 10			1 1
	i	1	2	3	4	5	6	/	8	9	10	-		
1	t (ceĸ)	0.001499	0.002732	0.00396	5 0.00519	0.00643	0.00766	3 0.0088	96 0.0101	29 0.01136	52 0.01259	5		
	e	0.052422	0.093026	0.13093	2 0.16559	0.19640	0.22279	0 0.2441	16 0.2598	33 0.26946	0.27271	0		
2	и(1/сек)	32.789178	31.78292	5 29.49358	32 26.60828	3 23.26190	5 19.41238	12 15.0794	88 10.3222	290 5.14790	J6 2.39661.	3		
1	Г (град.)) 1013.292	1013.292	1013.29	2 1013.29	1013.29	2 1013.29	2 1013.2	92 1013.2	92 1013.29	92 1013.29	2		
ė	∂σ/∂ε	380.05264	359.3733	7 299.7119	3 269.2788	3 196.6178	7 111.2066	8 101.625	79 107.036	514 97.9322	2 89.7586	2		
ė	∂σ / ∂u	0.36668	0.41868	0.44797	0.46324	0.51571	0.62151	0.7026	7 0.8034	2.7534	4 4.98821			
i	∂σ/∂T	-0.34143	-0.39087	-0.4280	-0.45576	-0.47460	-0.48020	-0.4779	5 -0.4718	-0.4462	7 -0.41624	,		
C	dɛ/dī	32.78918	32.13849	29.4856	4 26.6513	23.2738	7 19.4497	7 15.089	38 10.338	89 5.2493	9 2.39661			
4	du/dτ	-880.7966	-1170.630	7 -2248.682	28 -2517.344	7 -2916.411	2 -3326.766	0 -3697.25	49 -4003.56	80 -3523.42	58 -2122.426	60		
6	dT/dτ	-0.00000	-0.00000	-0.00000) -0.00000	0.00000	0.00000	-0.0000	0 -0.0000	0.0000	0 -0.00000)		
6	dσ/dτ	12138.640	11059.602	9 7829.855	5 6010.504	5 3072.040	1 95.3115	i -1064.49	48 -2110.11	02 -9187.46	24 -10371.99	941		
	σ(MΠa)	104.27893	119.3346	7 130.6958	32 139.1705	2 144.9131	9 146.6427	8 145.949	35 144.049	92 136.275	21 127.1003	13		
σ	эксп. (МП	a) 104.27893	119.3346	7 130.6952	29 139.1701	1 144.9128	0 146.6421	8 145.948	70 144.049	343 136.289	79 127.1103	80		

Рисунок 5 Окно программы расчета зависимости скорости деформации U и напряжения течения металла σ от времени τ по длине очага при прокатке

Рисунок 6 Окно программы визуализации графических зависимостей $\varepsilon(\tau)$, $U(\tau)$, $\sigma(\tau)$ по длине очага при прокатке (для стали марки ХВГ)

В таблице 1 представлены значения коэффициентов Ku для более чем 60-ти конструкционных, инструментальных и нержавеющих марок сталей. Расчеты выполнены в окнах программы, показанных на рисунках 3–5, по единой методике. Выделено несколько групп марок сталей, для которых определены указанные коэффициенты. Найденные значения лежат в диапазоне 0.75 < Ku (ср.) ≤ 1.05 . Представленные значения округлены до двух знаков после запятой.

Таблица 1

Значения коэффициента Ки для конструкционных, инструментальных							
и нержавеющих марок сталей							

	Марка стали	<i>Ku</i> (min)	<i>Ku</i> (max)	Ки (ср.)					
1	2	3	4	5					
	(0.75 <i>≤Ku</i> (cp.)≤0.80)								
1	[2], Сталь 45, стр. 153, рис. 65	0.76	0.77	0.77					
2	[1], Сталь 45, стр. 105, рис. 28	0.77	0.78	0.78					
3	[3], 18ХГТ, стр. 82, рис. II. 44–45	0.78	0.78	0.78					
4	[3], 20ХНГР, стр. 84, рис. II. 50–51	0.79	0.80	0.80					
5	[1], 14ГН, стр. 119, рис. 49	0.79	0.81	0.80					
6	[1], 15СХНД, стр. 133, рис. 71	0.79	0.80	0.80					
7	[1], У8, стр.156, рис.107	0.79	0.80	0.80					
8	[1], У12А, стр.159, рис.111	0.78	0.81	0.80					
9	[3], У8, стр.75, рис. II. 23-24	0.79	0.80	0.80					

Продолжение таблицы 1

1	2	3	4	5
	(0,80 <i>≤Ku</i> (cp.)≤0.	.85)		
10	[1], СТЗ, стр. 101, рис. 22	0.80	0.81	0.81
11	[1], ШХ15, стр. 163, рис. 118	0.80	0.81	0.81
12	[3], Сталь 20, стр. 71, рис. II. 10–11	0.80	0.81	0.81
13	[2], 18ХНВА, стр. 87, рис. 37	0.80	0.86	0.83
14	[3], 40Х, стр. 76, рис. II. 26–27	0.81	0.81	0.81
15	[3], ШХ15, стр. 78, рис. II. 32–33	0.80	0.81	0.81
16	[1], ХВГ, стр. 137, рис. 79	0.81	0.82	0.82
17	[1], Сталь 20, стр. 98, рис. 18	0.81	0.82	0.82
18	[1], Сталь 45, стр. 105, рис. 29	0.81	0.82	0.82
19	[1], 40Х, стр. 122, рис. 52	0.81	0.82	0.82
20	[1], 10Х17Н13М2Т, стр. 221, рис. 195	0.81	0.82	0.82
21	[1], 12Х13, стр. 187, рис. 142	0.81	0.83	0.82
22	[1], 18ХНВА, стр. 137, рис. 80	0.80	0.84	0.82
23	[1], 60С2, стр. 161, рис. 114	0.81	0.82	0.82
24	[2], У12А, стр. 83, рис. 33	0.81	0.82	0.82
25	[2], ХВГ, стр. 85, рис. 35	0.81	0.82	0.82
26	[1], Сталь 55, стр. 108, рис. 37	0.81	0.82	0.82
27	[3], 08КП, стр. 69, рис. II. 5-6	0.82	0.82	0.82
28	[3], 14ГН, стр. 80, рис. II. 38–39	0.81	0.82	0.82
29	[3], 45XH, стр. 83, рис. II. 47–48	0.82	0.82	0.82
30	[3], 60C2, стр. 86, рис. II. 56–57	0.81	0.82	0.82
31	[3], Ст3, стр. 72, рис. II. 14–15	0.82	0.82	0.82
32	[3], Ст6, стр. 74, рис. II. 20–21	0.81	0.82	0.82
33	[3], Сталь 08КП, стр. 69, рис. II. 5-6	0.82	0.82	0.82
34	[1], 12ХНЗА, стр. 146, рис. 97	0.82	0.84	0.83
35	[2], 2Х18Н9,стр. 89,рис. 39	0.80	0.86	0.83
36	[3], 15ХСНД, стр. 79, рис. II. 35–36	0.82	0.83	0.83
37	[3], 30ХГСА, стр. 85, рис. II. 53–54	0.82	0.83	0.83
38	[3], Сталь 45, стр. 73, рис. II. 17–18	0.82	0.83	0.83
39	[1], Р18, стр. 169, рис. 130	0.83	0.84	0.84
40	[3], X18H12M2T, стр. 102, рис. II. 104–105	0.84	0.84	0.84
41	[3], 12ХНЗА, стр. 81, рис. II. 41–42	0.83	0.84	0.84
42	[3], P18, стр. 103, рис. II. 107–108	0.84	0.84	0.84
43	[1], 12Х18Н9Т, стр. 211, рис. 181	0.83	0.86	0.85
44	[1], 60С2, стр. 161, рис. 113	0.84	0.85	0.85
45	[2], 60С2, стр. 84, рис. 34	0.84	0.86	0.85
46	[3], Сталь типа хромомолибденовой, стр. 88,	0.85	0.85	0.85
17	рис. II. 62–63	0.85	0.85	0.85
4/	$\frac{1}{1} \frac{1}{2} \frac{1}$	90)	0.03	0.03
48	[3] XBF cm 92 puc II 74-75	0.85	0.86	0.86
49	[1] 10X17H13M2T cm 219 nuc 192	0.84	0.88	0.86
50	[1] 12X18Н9Т стр. 207 рис. 177	0.85	0.86	0.86
51	[1] 40X13 crp 191 puc 150	0.85	0.87	0.86
52	[1] X17H2 crp 200 puc 164	0.85	0.87	0.86
53	[1]. Х12. стр. 185. рис. 139	0.83	0.89	0.86
54	[2], Х18Н9Т, стр. 88, рис. 38	0.85	0.86	0.86

Металлургия и материаловедение

1	2	3	4	5			
55	[3], 4X13, стр. 97, рис. II. 89–90	0.85	0.86	0.86			
56	[3], Сталь типа молибденомарганцовистой, стр. 87, рис. II. 59–60	0.85	0.86	0.86			
57	[3], Сталь типа хромоникельмолибденовой, стр. 90, рис. II. 68–69	0.85	0.86	0.86			
58	[3], Х17Н2, стр. 99, рис. П. 95–96	0.86	0.86	0.86			
59	[1], 40Х13, стр. 190, рис. 149	0.86	0.87	0.87			
60	[2], 4Х13, стр. 86, рис. 36	0.86	0.88	0.87			
61	[3], 18ХНВА, стр. 91, рис. II. 71–72	0.87	0.87	0.87			
62	[3], Сталь типа кремнемарганцовистой, стр. 86, рис. II. 65–66	0.86	0.87	0.87			
(0.9 <i>≤Ku</i> (cp.)≤1.0)							
63	[3], ЭП311, стр. 110, рис. II. 128–129	0.92	0.93	0.93			
	(1.0 <i>≤Ku</i> (cp.)≤1.)5)					
64	[3], ЭП220, стр. 112, рис. П. 134–135	1.03	1.05	1.04			

Продолжение таблицы 1

Выводы и направление дальнейших исследований. Зависимость напряжения течения металла по длине очага при горячей прокатке определили с учетом истории процесса нагружения на основе уравнения А. Надаи, а также сплайн-интерполяции экспериментальных кривых деформационного упрочнения и кривых распределения в очаге степени и скорости деформации.

Показано, что определение на базе экспериментальных кривых деформационного упрочнения среднего в очаге значения напряжения течения металла в зависимости от значений степени и скорости деформации, рассчитанных по формулам С. Экелунда или А. И. Целикова, не учитывает влияния особенностей изменения этих величин по длине очага при прокатке, как правило, дает завышенный результат и требует учета коэффициента истории нагружения *Ku*. Получены значения коэффициента *Ku* для более чем 60-ти конструкционных, инструментальных и нержавеющих марок сталей.

Библиографический список

1. Полухин, П. И. Сопротивление пластической деформации металлов и сплавов [Текст] : справочник / П. И. Полухин, Г. Я. Гун, А. М. Галкин. — М. : Металлургия, 1983. — 352 с.

2. Применение теории ползучести при обработке металлов давлением [Текст] / А. А. Поздеев [и др.]. — М. : Металлургия, 1973. — 192 с.

3. Теория прокатки [Текст] : справочник / А. И. Целиков [и др.]. — М. : Металлургия, 1982. — 335 с.

4. Методы компьютерного моделирования напряжения течения металла в процессах горячей пластической деформации [Текст] : учебное пособие для обучающихся образовательных учреждений высшего профессионального образования / А. В. Яковченко, С. А. Снитко, Н. И. Ивлева. — Донецк : ДонНТУ, 2018. — 197 с.

© <u>Яковченко А. В.</u> © <u>Кравцова С. И.</u>

Рекомендована к печати к.т.н., доц., зав. каф. ОМДиМ ДонГТИ Денищенко П. Н., д.т.н., доц., зав. каф. ОМД ДонНТУ Снитко С. А.

Статья поступила в редакцию 30.09.2020.

Doctor of Technical Sciences Yakovchenko A. V., Kravtsova S. I. (DonSTI, Alchevsk, LPR, mond1991@mail.ru)

COEFFICIENT FOR CONSIDERING LOADING HISTORY AT CALCULATING METAL FLOW STRESS IN HOT ROLLING PROCESSES

The paper is devoted to determining the average stress value of metal flow in the zone on the basis of experimental hardening curves, depending on the values of degree and strain rate calculated by the formulas C. Ekelund or A. I. Tselikov, does not take into account the influence of features of changes in these values along the length of the zone during hot rolling, as a rule, gives an overestimated result and requires to take into account the Ki coefficient of loading history. The values of the Ki coefficients for more than 60 structural, tool and stainless steel grades are obtained.

Key words: A. Nadai equation, metal flow stress distribution curve during hot rolling, computer database of digital information about strain hardening curves, spline-interpolation of hardening curves, coefficient for considering loading history.